TECHNICAL DATA SHEET

High-tensile spiral rope net SPIDER® S3 - 130

<table>
<thead>
<tr>
<th>SPIDER® high-performance net</th>
<th>Steel wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh shape: rhomboid</td>
<td>Wire diameter: $D_w = 3.0$ mm</td>
</tr>
<tr>
<td>Diagonal: $x \cdot y = 164 \cdot 270$ mm (+/- 5%)</td>
<td>Tensile strength steel wire: $f_t \geq 1'770$ N/mm²</td>
</tr>
<tr>
<td>Mesh width: $D_i = 130$ mm (+/- 5%)</td>
<td>Material: high-tensile steel wire</td>
</tr>
<tr>
<td>Angle of mesh: $\varepsilon = 47^\circ$</td>
<td>Tensile resistance of a wire: $Z_w = 12.5$ kN</td>
</tr>
<tr>
<td>No. of meshes longitudinal: $m = 3.7$ pcs/m</td>
<td></td>
</tr>
<tr>
<td>No. of meshes transversal: $n = 6.1$ pcs/m</td>
<td></td>
</tr>
</tbody>
</table>

Corrosion protection

- Corrosion protection: GEOBRUGG SUPERCOATING®
- Compound: 95% Zn / 5% Al
- Coating: min. 150 g/m²

Steel strand

- Strand diameter: $D_s = 6.5$ mm
- Construction: 1 x 3

Net roll dimensions

- Roll width: $b_{roll} = 3.5$ m
- Roll length: $l_{roll} = 20$ m
- Total surface per roll: $A_{roll} = 70$ m²
- Weight per m²: $g = 2.9$ kg/m²
- Weight per roll: $G_{roll} = 203$ kg
- Net edges: mesh ends knotted

Bearing capacity

- Tensile strength of net: $z_k \geq 220$ kN/m *)
- Bearing resistance against puncturing: $D_i \geq 230$ kN / 300 kN *)
- Bearing resistance against shearing-off: $P_n \geq 115$ kN / 150 kN *)
- Bearing resistance against slope-parallel tensile stress: $Z_n \geq 45$ kN / 70 kN *)
- Elongation in longitudinal tensile strength test: $\delta < 10$ % *)
- Classification according to EAD 230025-00-0106
 - group 2, class B (P33)
 - group 1, class B (P66)

*) As in EAD 230025-00-0106 and referring to TÜV Rheinland LGA test report 01/2014 using spike plate P33 / P66

Rockfall, slides, mudflows and avalanches are natural events and therefore cannot be calculated. This is why it is impossible to determine or guarantee absolute safety for persons and property with scientific methods. This means that to provide the protection we strive for, it is imperative to maintain and service protective systems regularly and appropriately. Moreover, the degree of protection can be diminished by events that exceed the absorption capacity of the system as calculated to good engineering practice, failure to use original parts or corrosion (i.e., from environmental pollution or other outside influences).